Extensions of Vector Bundles and Rationality of Certain Moduli Spaces of Stable Bundles
نویسندگان
چکیده
In this paper, it is proved that certain stable rank-3 vector bundles can be written as extensions of line bundles and stable rank-2 bundles. As an application, we show the rationality of certain moduli spaces of stable rank-3 bundles over the projective plane P 2 .
منابع مشابه
Birational Models of the Moduli Spaces of Stable Vector Bundles over Curves
We give a method to construct stable vector bundles whose rank divides the degree over curves of genus bigger than one. The method complements the one given by Newstead. Finally, we make some systematic remarks and observations in connection with rationality of moduli spaces of stable vector bundles.
متن کاملRank-3 Stable Bundles on Rational Ruled Surfaces
In this paper, we compare the moduli spaces of rank-3 vector bundles stable with respect to diierent ample divisors over rational ruled surfaces. We also discuss the irreducibility, unirationality, and rationality of these moduli spaces.
متن کاملOn Some Moduli Spaces of Stable Vector Bundles on Cubic and Quartic Threefolds
We study certain moduli spaces of stable vector bundles of rank two on cubic and quartic threefolds. In many cases under consideration, it turns out that the moduli space is complete and irreducible and a general member has vanishing intermediate cohomology. In one case, all except one component of the moduli space has such vector bundles.
متن کاملRationality of Moduli Spaces of Parabolic Bundles
The moduli space of parabolic bundles with fixed determinant over a smooth curve of genus greater than one is proved to be rational whenever one of the multiplicities associated to the quasi-parabolic structure is equal to one. It follows that if rank and degree are coprime, the moduli space of vector bundles is stably rational, and the bound obtained on the level is strong enough to conclude r...
متن کاملNon-Abelian Zeta Functions For Function Fields
In this paper we initiate a geometrically oriented construction of non-abelian zeta functions for curves defined over finite fields. More precisely, we first introduce new yet genuine non-abelian zeta functions for curves defined over finite fields, by a ‘weighted count’ on rational points over the corresponding moduli spaces of semi-stable vector bundles using moduli interpretation of these po...
متن کامل